
Malaysian Journal of Mathematical Sciences 14(2): 321–333 (2020)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On Oscillation of Fourth Order Delay
Differential Equations

Lafci Büyükkahraman, M.

Department of Mathematics, Faculty of Arts and Sciences, Uşak
University, Uşak, Turkey

E-mail: mehtap.lafci@usak.edu.tr

Received: 2 January 2019
Accepted: 25 April 2020

ABSTRACT

The purpose of this paper is to obtain the oscillatory behavior of solutions
of a class of fourth order differential equations(

a(t)
(
x′′′(t)

)γ)′
+ b(t)f(x(τ(t))) = 0 for t ≥ t0

under the condition ∫ ∞

t0

1

a1/γ(s)
ds <∞

and also two examples are given to clarify our results.
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1. Introduction

In recent years the oscillation behavior of solutions of nonlinear differential
equations has been studied in some papers and books. We refer the reader to
the books (Agarwal et al. (2002), Agarwal et al. (2003), Agarwal et al. (2004),
Agarwal et al. (2000), Kiguradze and Chanturia (1992), Ladde et al. (1987)) and
the papers (Agarwal et al. (1997), Agarwal et al. (2001), Elabbasy and Moaaz
(2016), Győri and Ladas (1991), Li et al. (2011b), Li and Rogovchenko (2014),
Li and Rogovchenko (2017), Philos (1981), Zhang et al. (2011), Zhang et al.
(2013)). In the last few years, there have been many papers which include the
oscillatory theory of fourth order differential equations (Agarwal et al. (2006),
Elabbasy et al. (2017), Grace et al. (2013), Grace et al. (2019), Kamo (2011),
Kusano et al. (2011), Li et al. (2011a), Li et al. (2014a), Li et al. (2014b), Li
and Rogovchenko (2014), Li et al. (2015), Moaaz et al. (2017), Tripathy (2013),
Tripathy et al. (2013), Zhang et al. (2012), Zhang et al. (2014), Zhang et al.
(2015)).

This paper deals with the oscillation of the following nonlinear fourth order
delay differential equation(

a(t) (x′′′(t))
γ)′

+ b(t)f(x(τ(t))) = 0 for t ≥ t0. (1)

During this paper, we assume that the following conditions hold:

(δ1) γ is a quotient of odd positive integers,

(δ2) a ∈ C1[t0,∞), a′(t) ≥ 0, a(t) > 0, b, τ ∈ C[t0,∞), b(t) ≥ 0, τ(t) ≤ t and
limt→∞ τ(t) =∞,

(δ3)
f(x)

xγ
≥ m > 0 for x 6= 0,

(δ4)
∫∞
t0

1

a1/γ(s)
ds <∞.

There is a function x(t) ∈ C3[px,∞), px ≥ t0 such that a(t)(x′′′(t))γ ∈
C1[px,∞) and if it satisfies Eq.(1) on [px,∞) then it is a solution of Eq.(1). We
restrain ourselves to the analysis of the solutions x(t) of Eq.(1) with property
sup {| x(t) |: t ≥ q} > 0 for all q ≥ px. A solution of Eq.(1) is called oscillatory
if it has arbitrarily large zeros on [px,∞); otherwise, it is called nonoscillatory.
Eq.(1) is said to be oscillatory if all solutions of this equation are oscillatory.

322 Malaysian Journal of Mathematical Sciences



On Oscillation of Fourth Order Delay Differential Equations

For using in proofs of the theorems, we need to give the following lemma.

Lemma 1.1. (Agarwal et al. (2000), Lemma 2.2.3) Let y ∈ Cn([t0,∞)(0,∞)).
Assume that yn(t) is of fixed sign and not identically zero on [t0,∞) and
that there exists t1 ≥ t0 such that y(n−1)(t)y(n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ y(t) 6= 0, then, for every λ ∈ (0, 1), there exists tk ∈ [t1,∞) such
that

y(t) ≥ λ

(n− 1)!
tn−1|y(n−1)(t)| for t ∈ [tk,∞).

2. Main Results

In this section, we obtain oscillation criteria for the solutions of Eq.(1). For
convenience, we introduce the symbols

A(t) =

∫ ∞
t

1

a1/γ(s)
ds, φ′+(t) = max {0, φ′(t)} , ψ′+(t) = max {0, ψ′(t)} .

Lemma 2.1. If x(t) is an eventually positive three times continuously dif-
ferentiable function such that a(t)(x′′′(t))γ is continuously differentiable and
(a(t)(x′′′(t))γ)′ ≤ 0 for large t, then one of the following cases holds for large
t.

(θ1) x
′(t) > 0, x′′(t) > 0, x′′′(t) > 0, x(iv)(t) ≤ 0.

(θ2) x
′(t) > 0, x′′(t) < 0, x′′′(t) > 0, x(iv)(t) ≤ 0.

(θ3) x
′(t) < 0, x′′(t) > 0, x′′′(t) < 0.

(θ4) x
′(t) > 0, x′′(t) > 0, x′′′(t) < 0.

The proof is clear.

Theorem 2.1. Let (δ1), (δ2), (δ3) and (δ4) hold. Suppose that there exist pos-
itive functions φ, ψ ∈ C1(t0,∞) such that∫ ∞

t0

[
mb(s)

(
τ3(s)

s3

)γ
φ(s)− 2γ

(γ + 1)γ+1

a(s)(φ′+(s))
γ+1

(k1φ(s)s2)γ

]
ds =∞, (2)
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∫ ∞
t0

ψ(s)∫ ∞
s

[
m

a(v)

∫ ∞
v

b(ζ)

(
τ(ζ)

ζ

)γ
dζ

] 1
γ
dv −

(ψ′+(s))
2

4ψ(s)

 ds =∞, (3)

∫ ∞
t0

[
mb(s)

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ
− γγ

(γ + 1)γ+1

∫∞
s
A(v)dv∫∞

s

∫∞
u
A(v)dvdu

]
ds =∞

(4)

and ∫ ∞
t0

[
mb(s)

(
k2
2
τ2(s)

)γ
Aγ(s)− γγ+1

(γ + 1)γ+1

1

A(s)a1/γ(s)

]
ds =∞ (5)

for some constants k1, k2 ∈ (0, 1), then every solution of Eq.(1) is oscillatory.

Proof. Let x be a nonoscillatory solution of Eq.(1) on the interval [t0,∞).
Without loss of generality, we can assume that x is eventually positive. From
Lemma 2.1, there exists a t1 ≥ t0 such that x(t) has one of four cases (θ1)−(θ4)
for t ≥ t1. For (θ1), by Kiguradze Lemma (Kiguradze and Chanturia (1992)),

we find x(t) ≥ t

3
x′(t), hence

x(τ(t))

x(t)
≥ τ3(t)

t3
. (6)

We define
z(t) = φ(t)

a(t)(x′′′)γ(t)

xγ(t)
, t ≥ t1. (7)

Then z(t) > 0 and

z′(t) = φ′(t)
a(t)(x′′′)γ(t)

xγ(t)
+ φ(t)

(a(x′′′)γ)′(t)

xγ(t)
− γφ(t)x

γ−1(t)x′(t)a(t)(x′′′)γ(t)

x2γ(t)
.

(8)
From Lemma 1.1, we get

x′(t) ≥ k1
2
t2x′′′(t) (9)

for every k1 ∈ (0, 1) and all sufficiently large t. Hence, by (8) and (9), we find

z′(t) ≤ φ′(t)a(t)(x
′′′)γ(t)

xγ(t)
+ φ(t)

(a(x′′′)γ)′(t)

xγ(t)
− γk1

2
t2φ(t)

x′′′(t)a(t)(x′′′)γ(t)

xγ+1(t)
.

(10)
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Thus, because of (1), (6) and (δ3), we obtain

z′(t) ≤
φ′+(t)

φ(t)
z(t)−mφ(t)b(t)

(
τ3(t)

t3

)γ
− γk1

2

t2

(a(t)φ(t))1/γ
z(γ+1)/γ(t). (11)

With

α =
γk1t

2

2(a(t)φ(t))1/γ
, β =

φ′+(t)

φ(t)
, y = z(t)

by using the inequality

βy − αy
γ + 1

γ ≤ γγ

(γ + 1)γ+1

βγ+1

αγ
, α, β > 0, (12)

and from (11), we get

z′(t) ≤ −mb(t)
(
τ3(t)

t3

)γ
φ(t) +

2γ

(γ + 1)γ+1

a(t)(φ′+(t))
γ+1

(k1φ(t)t2)γ
,

which implies that∫ t

t1

[
mb(s)

(
τ3(s)

s3

)γ
φ(s)− 2γ

(γ + 1)γ+1

a(s)(φ′+(s))
γ+1

(k1φ(s)s2)γ

]
ds ≤ z(t1)

for every k1 ∈ (0, 1) and all sufficiently large t. Therefore this contradicts (2).

Presume that (θ2) is satisfied. By integrating (1) from t to l, we have

a(l)(x′′′)γ(l)− a(t)(x′′′)γ(t) +
∫ l

t

b(s)f(x(τ(s)))ds = 0.

From Kiguradze Lemma, we get
x(τ(t))

x(t)
≥ τ(t)

t
. By using (δ3) and x′(0) > 0,

a(l)(x′′′)γ(l)− a(t)(x′′′)γ(t) + xγ(t)

∫ l

t

mb(s)

(
τ(s)

s

)γ
ds ≤ 0.

Letting l −→∞, we find the inequality

−a(t)(x′′′)γ(t) + xγ(t)

∫ ∞
t

mb(s)

(
τ(s)

s

)γ
ds ≤ 0,

and so,

−x′′′(t) + x(t)

[
m

a(t)

∫ ∞
t

b(s)

(
τ(s)

s

)γ
ds

]1/γ
≤ 0.
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Taking the integral again from t to ∞, we get

x′′(t) + x(t)

∫ ∞
t

[
m

a(v)

∫ ∞
v

b(s)

(
τ(s)

s

)γ
ds

]1/γ
dv ≤ 0. (13)

Now, we define

ξ(t) = ψ(t)
x′(t)

x(t)
, t ≥ t1.

Then ξ(t) > 0 for t ≥ t1 and differentiating the above equality and using (13),
we obtain

ξ′(t) ≤ −ψ(t)
∫ ∞
t

[
m

a(v)

∫ ∞
v

b(s)

(
τ(s)

s

)γ
ds

]1/γ
dv+

ψ′+(t)

ψ(t)
ξ(t)−ξ

2(t)

ψ(t)
. (14)

Thus, we have

ξ′(t) ≤ −ψ(t)
∫ ∞
t

[
m

a(v)

∫ ∞
v

b(s)

(
τ(s)

s

)γ
ds

]1/γ
dv +

(ψ′+(t))
2

4ψ(t)
.

Hence, we get

∫ t

t1

ψ(s)∫ ∞
s

[
m

a(v)

∫ ∞
v

q(ζ)

(
τ(ζ)

ζ

)γ
dζ

] 1
γ
dv −

(ψ′+(s))
2

4ψ(s)

 ds ≤ ξ(t1),
which contradicts (3).

Consider case (θ3) holds. Since a(x′′′)γ is nonincreasing, we have

a1/γ(s)x′′′(s) ≤ a1/γ(t)x′′′(t), s ≥ t ≥ t1.

Integrating this inequality from t to l, we get

x′′(l) ≤ x′′(t) + a1/γ(t)x′′′(t)

∫ l

t

a−1/γ(s)ds.

Letting l −→∞, we see that

x′′(t) ≥ −a1/γ(t)x′′′(t)A(t). (15)

Taking the integral (15) from t to ∞, we obtain

− x′(t) ≥
∫ ∞
t

−a1/γ(s)x′′′(s)A(s)ds ≥ −a1/γ(t)x′′′(t)
∫ ∞
t

A(s)ds. (16)
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By taking the integral (16) from t to ∞, we find

x(t) ≥ −
∫ ∞
t

a1/γ(u)x′′′(u)

∫ ∞
u

A(s)dsdu ≥ −a1/γ(t)x′′′(t)
∫ ∞
t

∫ ∞
u

A(s)dsdu.

(17)
Next, we define

ν(t) =
a(t)(x′′′)γ(t)

xγ(t)
, t ≥ t1. (18)

Thus, ν(t) < 0 for t ≥ t1, by (1), (16) and (δ3), we conclude that

ν′(t) ≤ −mb(t)x
γ(τ(t))

xγ(t)
− γ a

(γ+1)/γ(t)(x′′′)γ+1(t)

xγ+1(t)

∫ ∞
t

A(s)ds. (19)

Hence, by (18) and (19), we obtain

ν′(t) ≤ −mb(t)− γν(γ+1)/γ(t)

∫ ∞
t

A(s)ds. (20)

From (17), we have

ν(t)

(∫ ∞
t

∫ ∞
u

A(s)dsdu

)γ
≥ −1. (21)

Multiplying (20) by
(∫∞
t

∫∞
u
A(s)dsdu

)γ and integrating from t1 to t, we find(∫ ∞
t

∫ ∞
u

A(s)dsdu

)γ
ν(t)−

(∫ ∞
t1

∫ ∞
u

A(s)dsdu

)γ
ν(t1)

+γ

∫ t

t1

∫ ∞
s

A(v)dv

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ−1
ν(s)ds

+

∫ t

t1

mb(s)

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ
ds

+γ

∫ t

t1

ν(γ+1)/γ(s)

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ ∫ ∞
s

A(v)dvds ≤ 0.

We set

β =

∫ ∞
s

A(v)dv

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ−1
,

α =

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ ∫ ∞
s

A(v)dv,

y = −ν(s).
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Using the inequality

− βy + αy

γ + 1

γ ≥ − γγ

(γ + 1)γ+1

βγ+1

Aγ
, α, β > 0, (22)

we conclude that ∫ ∞
s

A(v)dv

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ−1
ν(s)

+ν(γ+1)/γ(s)

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ ∫ ∞
s

A(v)dv

≥ − γγ

(γ + 1)γ+1

∫∞
s
A(v)dv∫∞

s

∫∞
u
A(v)dvdu

.

Hence, by (21), it follows that∫ t

t1

[
mb(s)

(∫ ∞
s

∫ ∞
u

A(v)dvdu

)γ
− γγ

(γ + 1)γ+1

∫∞
s
A(v)dv∫∞

s

∫∞
u
A(v)dvdu

]
ds

≤
(∫ ∞

t1

∫ ∞
u

A(s)dsdu

)γ
ν(t1) + 1

which contradicts (4).

Assume that (θ4) holds. Because of the proof of case (θ3), we know (15).
From Lemma 1.1, we get

x(t) ≥ k2
2
t2x′′(t) (23)

for every k2 ∈ (0, 1) and all sufficiently large t. We define

µ(t) =
a(t)(x′′′)γ(t)

(x′′)γ(t)
, t ≥ t1. (24)

Then µ(t) < 0 for t ≥ t1 and, by virtue of (23), (24) and (δ3), we conclude that

µ′(t) ≤ −mb(t)
(
k2
2
τ2(t)

)γ
− γ µ

(γ+1)/γ(t)

a1/γ(t)
. (25)

Multiplying this inequality by Aγ(t) and integrating from t1 to t, we find

Aγ(t)µ(t)−Aγ(t1)µ(t1) + γ

∫ t

t1

a−1/γ(s)Aγ−1(s)µ(s)ds

≤ −
∫ t

t1

mb(s)

(
k2
2
τ2(s)

)γ
Aγ(s)ds

−γ
∫ t

t1

µ(γ+1)/γ(s)

a1/γ(s)
Aγ(s)ds.
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By applying the same steps in case (θ3), we obtain[∫ t

t1

mb(s)

(
k2
2
τ2(s)

)γ
Aγ(s)− γγ+1

(γ + 1)γ+1

1

A(s)a1/γ(s)

]
ds ≤ Aγ(t1)µ(t1)+1.

Therefore this contradicts (5) and this completes the proof.

Remark 2.1. Taking f(x(τ(t))) = xγ(τ(t)) in Eq.(1), Theorem 2.1 in Zhang
et al. (2014) is obtained.

In the following theorem, we compare the oscillatory behavior of Eq.(1)
with the second order differential equations which are given in Agarwal et al.
(1997) and Swanson (1968).

Theorem 2.2. Suppose that (δ1), (δ2), (δ3) and (δ4) are satisfied. If the differ-
ential equations(

a(t)

t2γ
(x′(t))γ

)′
+mb(t)

(
k1τ

3(t)

2t3

)γ
xγ(t) = 0, (26)

x′′(t) + x(t)

∫ ∞
t

[
m

a(v)

∫ ∞
v

q(s)

(
τ(s)

s

)γ
ds

]1/γ
dv = 0, (27)((∫ ∞

t

A(s)ds

)−γ
(x′(t))γ

)′
+mb(t)xγ(t) = 0 (28)

and

(a(t)(x′(t))γ)
′
+mb(t)

(
k2
2
τ2(t)

)γ
xγ(t) = 0 (29)

are oscillatory for some constants k1, k2 ∈ (0, 1). Then every solution of Eq.(1)
is oscillatory.

Proof. As proof of Theorem 2.1, we have that (11), (14), (20) and (25). If we
set φ(t) = 1 in (11), then we get

z′(t) +
γk1
2

t2

(a(t))1/γ
z(γ+1)/γ +mb(t)

(
τ3(t)

t3

)γ
≤ 0

for every constant k1 ∈ (0, 1). Thus, from Agarwal et al. (1997), we can see
that the equation (26) is nonoscillatory for every constant k1 ∈ (0, 1). This
is contradiction. Taking ψ(t) = 1 in (14), we get that the equation (27) is
nonoscillatory from Therorem 2.15 in Swanson (1968). The other cases are
similarly demonstrated.

Remark 2.2. Taking f(x(τ(t))) = xγ(τ(t)) in Eq.(1), Theorem 2.2 in Zhang
et al. (2014) is obtained.
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3. Examples

Example 3.1. As a special case of Eq.(1), we consider(
t7 (x′′′(t))

)′
+ ηt3ex(t) = 0 for t ≥ 1, (30)

where η > 0 is a constant. If we choose φ(t) = ψ(t) = 1 and m = 1, then we
find that (2) and (3) hold, (4) and (5) are satisfied for η > 120. Therefore, by
Theorem 2.1, every solution of Eq.(30) is oscillatory for η > 120.

Example 3.2. Consider the delay differential equation(
et (x′′′(t))

)′
+ et(x3(t− 1) + x(t− 1)) = 0 for t ≥ 0. (31)

It is easy to see that every solution of Eq.(31) is oscillatory because of Theorem
2.1 for m = φ(t) = ψ(t) = 1.

4. Conclusion

We have introduced a nonlinear fourth order delay differential equation (1).
Eq.(1) is a generalization of the equation studied in Zhang et al. (2014). If it
is f(x(τ(t))) = xγ(τ(t)) in Eq.(1), the equation (1.1) in Zhang et al. (2014)
is gotten. Moreover, we have given two theorems on oscillation and when
f(x(τ(t))) = xγ(τ(t)), Theorem 2.1 and Theorem 2.2 about oscillation criteria
for the solutions of Eq.(1) are as Theorem 2.1 and Theorem 2.2 in Zhang et al.
(2014). Finally, we have present two examples to illustrate our main results.
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